Validity of REDS Screening Tools: A Review of Recent Literature
DOI:
https://doi.org/10.5281/zenodo.18158017Keywords:
Relative energy deficiency, screening, validityAbstract
Relative energy deficiency in sport (REDS) was introduced by the International Olympic Committee in 2014 with the intention of establishing a diagnosis that would build on the conceptual framework of the female athlete triad but would also recognize that both male and female athletes from various sport backgrounds could be affected by low energy availability. However, there is no gold standard screening method for this condition. This literature review was conducted to identify recent studies that have validated the various screening tools for REDS. A literature search was conducted using the National Library of Medicine MEDLINE database via PubMed, articles were manually sorted by title and abstract review, then thorough review of the selected articles was conducted and reported in this paper. We found that in the last 15 years there have been many studies related to REDS. A small proportion of these studies attempted to validate REDS screening tools (Low Energy Availability in Females Questionnaire, Relative Energy Deficiency in Sport Clinical Assessment Tool, etc.) and did so with reasonable success. Given that the volume of research on this specific topic is relatively limited, especially in diverse populations, it seems that no single tool could be considered a gold standard. However, given that most of these tools (particularly the newer Female Energy Deficiency Questionnaire) were validated with statistical significance, we think they could play a strong role in the initial clinical assessment of an athlete or patient.
References
REFERENCES
Amoruso, I., Fonzo, M., Barro, A., Scardina, C., Titton, F., Bertoncello, C., & Baldovin, T. (2024). Determinants of menstrual dysfunction in the female athlete triad: A cross-sectional study in Italian athletes. Psychology of Sport and Exercise, 73, 102653. https://doi.org/10.1016/j.psychsport.2024.102653
Beitins, I. Z., McArthur, J. W., Turnbull, B. A., Skrinar, G. S., & Bullen, B. A. (1991). Exercise induces two types of human luteal dysfunction: Confirmation by urinary free progesterone. The Journal of Clinical Endocrinology and Metabolism, 72(6), 1350–1358. https://doi.org/10.1210/jcem-72-6-1350
Bullen, B. A., Skrinar, G. S., Beitins, I. Z., von Mering, G., Turnbull, B. A., & McArthur, J. W. (1985). Induction of menstrual disorders by strenuous exercise in untrained women. The New England Journal of Medicine, 312(21), 1349–1353. https://doi.org/10.1056/NEJM198505233122103
Cunningham J. J. (1980). A reanalysis of the factors influencing basal metabolic rate in normal adults. The American journal of clinical nutrition, 33(11), 2372–2374. https://doi.org/10.1093/ajcn/33.11.2372
Cupka, M., & Sedliak, M. (2023). Hungry runners—Low energy availability in male endurance athletes and its impact on performance and testosterone: Mini-review. European Journal of Translational Myology, 33(2). https://doi.org/10.4081/ejtm.2023.11104
Ferraris, C., de Cassya Lopes Neri, L., Amoroso, A. P., Bosio, F., Fiorini, S., Guglielmetti, M., Nappi, R. E., & Tagliabue, A. (2025). Screening tool for the identification of relative energy deficiency in Sport risk: Validation of the low energy availability in female questionnaire—Italian version (LEAFQ-ITA). Journal of the International Society of Sports Nutrition, 22(1), 2550317. https://doi.org/10.1080/15502783.2025.2550317
Heikura, I. A., McCluskey, W. T. P., Tsai, M.-C., Johnson, L., Murray, H., Mountjoy, M., Ackerman, K. E., Fliss, M., & Stellingwerff, T. (2024). Application of the IOC Relative Energy Deficiency in Sport (REDs) Clinical Assessment Tool version 2 (CAT2) across 200+ elite athletes. British Journal of Sports Medicine, 59(1), 24–35. https://doi.org/10.1136/bjsports-2024-108121
Heikura, I. A., Uusitalo, A. L. T., Stellingwerff, T., Bergland, D., Mero, A. A., & Burke, L. M. (2018). Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes. International Journal of Sport Nutrition and Exercise Metabolism, 28(4), 403–411. https://doi.org/10.1123/ijsnem.2017-0313
Hilton, L. K., & Loucks, A. B. (2000). Low energy availability, not exercise stress, suppresses the diurnal rhythm of leptin in healthy young women. American Journal of Physiology. Endocrinology and Metabolism, 278(1), E43-49. https://doi.org/10.1152/ajpendo.2000.278.1.E43
Hou, D., Ndjonko, L. C. M., DeHeer, E., Scheid, J. L., & Tjong, V. K. (2025). How Well Do Athletic Trainers Recognize and Evaluate the Female Athlete Triad? A Survey of Athletic Trainers in the Practicing United States. Journal of Women’s Health (2002), 34(7), 947–952. https://doi.org/10.1089/jwh.2024.0910
Kraus, E., Tenforde, A. S., Nattiv, A., Sainani, K. L., Kussman, A., Deakins-Roche, M., Singh, S., Kim, B. Y., Barrack, M. T., & Fredericson, M. (2019). Bone stress injuries in male distance runners: Higher modified Female Athlete Triad Cumulative Risk Assessment scores predict increased rates of injury. British Journal of Sports Medicine, 53(4), 237–242. https://doi.org/10.1136/bjsports-2018-099861
Kroshus, E., DeFreese, J. D., & Kerr, Z. Y. (2018). Collegiate Athletic Trainers’ Knowledge of the Female Athlete Triad and Relative Energy Deficiency in Sport. Journal of Athletic Training, 53(1), 51–59. https://doi.org/10.4085/1062-6050-52.11.29
Kroshus, E., Fischer, A. N., & Nichols, J. F. (2015). Assessing the Awareness and Behaviors of U.S. High School Nurses With Respect to the Female Athlete Triad. The Journal of School Nursing : The Official Publication of the National Association of School Nurses, 31(4), 272–279. https://doi.org/10.1177/1059840514563760
Lieberman, J. L., DE Souza, M. J., Wagstaff, D. A., & Williams, N. I. (2018). Menstrual Disruption with Exercise Is Not Linked to an Energy Availability Threshold. Medicine and Science in Sports and Exercise, 50(3), 551–561. https://doi.org/10.1249/MSS.0000000000001451
Lodge, M. T., Ackerman, K. E., & Garay, J. (2022). Knowledge of the Female Athlete Triad and Relative Energy Deficiency in Sport Among Female Cross-Country Athletes and Support Staff. Journal of Athletic Training, 57(4), 385–392. https://doi.org/10.4085/1062-6050-0175.21
Logue, D. M., Madigan, S. M., Melin, A., Delahunt, E., Heinen, M., Donnell, S.-J. M., & Corish, C. A. (2020). Low Energy Availability in Athletes 2020: An Updated Narrative Review of Prevalence, Risk, Within-Day Energy Balance, Knowledge, and Impact on Sports Performance. Nutrients, 12(3). https://doi.org/10.3390/nu12030835
Loucks, A. B., & Heath, E. M. (1994). Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. The American Journal of Physiology, 266(3 Pt 2), R817-823. https://doi.org/10.1152/ajpregu.1994.266.3.R817
Loucks, A. B., & Thuma, J. R. (2003). Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. The Journal of Clinical Endocrinology and Metabolism, 88(1), 297–311. https://doi.org/10.1210/jc.2002-020369
Melin, A., Tornberg, A. B., Skouby, S., Faber, J., Ritz, C., Sjödin, A., & Sundgot-Borgen, J. (2014). The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. British Journal of Sports Medicine, 48(7), 540–545. https://doi.org/10.1136/bjsports-2013-093240
Miller, S. M., Kukuljan, S., Turner, A. I. T., van der Pligt, P., & Ducher, G. (2012). Energy deficiency, menstrual disturbances, and low bone mass: What do exercising Australian women know about the female athlete triad? International Journal of Sport Nutrition and Exercise Metabolism, 22(2), 131–138.
Mountjoy, M., Ackerman, K. E., Bailey, D. M., Burke, L. M., Constantini, N., Hackney, A. C., Heikura, I. A., Melin, A., Pensgaard, A. M., Stellingwerff, T., Sundgot-Borgen, J. K., Torstveit, M. K., Jacobsen, A. U., Verhagen, E., Budgett, R., Engebretsen, L., & Erdener, U. (2023). 2023 International Olympic Committee’s (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs). British Journal of Sports Medicine, 57(17), 1073–1097. https://doi.org/10.1136/bjsports-2023-106994
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89. https://doi.org/10.1186/s13643-021-01626-4
Pritchett, K., DiFolco, A., Glasgow, S., pritchett, R., Williams, K., Stellingwerff, T., Roney, P., Scaroni, S., & Broad, E. (2021). Risk of Low Energy Availability in National and International Level Paralympic Athletes: An Exploratory Investigation. Nutrients, 13(3). https://doi.org/10.3390/nu13030979
Rogers, M. A., Drew, M. K., Appaneal, R., Lovell, G., Lundy, B., Hughes, D., Vlahovich, N., Waddington, G., & Burke, L. M. (2021). The Utility of the Low Energy Availability in Females Questionnaire to Detect Markers Consistent With Low Energy Availability-Related Conditions in a Mixed-Sport Cohort. International Journal of Sport Nutrition and Exercise Metabolism, 31(5), 427–437. https://doi.org/10.1123/ijsnem.2020-0233
Salamunes, A. C. C., Williams, N. I., Olmsted, M., Koltun, K. J., Kuruppumullage Don, P., & DE Souza, M. J. (2025). Development and Validation of a Risk Assessment Tool for Energy Deficiency in Young Active Females: The Female Energy Deficiency Questionnaire (FED-Q). Medicine and Science in Sports and Exercise, 57(9), 2040–2052. https://doi.org/10.1249/MSS.0000000000003742
Schofield, K. L., Thorpe, H., & Sims, S. T. (2019). Resting metabolic rate prediction equations and the validity to assess energy deficiency in the athlete population. Experimental Physiology, 104(4), 469–475. https://doi.org/10.1113/EP087512
Stellingwerff, T., Mountjoy, M., McCluskey, W. T., Ackerman, K. E., Verhagen, E., & Heikura, I. A. (2023). Review of the scientific rationale, development and validation of the International Olympic Committee Relative Energy Deficiency in Sport Clinical Assessment Tool: V.2 (IOC REDs CAT2)-by a subgroup of the IOC consensus on REDs. British Journal of Sports Medicine, 57(17), 1109–1118. https://doi.org/10.1136/bjsports-2023-106914
Strock, N. C. A., Koltun, K. J., Mallinson, R. J., Williams, N. I., & De Souza, M. J. (2020a). Characterizing the resting metabolic rate ratio in ovulatory exercising women over 12 months. Scandinavian Journal of Medicine & Science in Sports, 30(8), 1337–1347. https://doi.org/10.1111/sms.13688
Strock, N. C. A., Koltun, K. J., Southmayd, E. A., Williams, N. I., & De Souza, M. J. (2020b). Indices of Resting Metabolic Rate Accurately Reflect Energy Deficiency in Exercising Women. International Journal of Sport Nutrition and Exercise Metabolism, 30(1), 14–24. https://doi.org/10.1123/ijsnem.2019-0199
Strock, N. C. A., Koltun, K. J., Southmayd, E. A., Williams, N. I., & De Souza, M. J. (2020c). Indices of Resting Metabolic Rate Accurately Reflect Energy Deficiency in Exercising Women. International Journal of Sport Nutrition and Exercise Metabolism, 30(1), 14–24. https://doi.org/10.1123/ijsnem.2019-0199
Suzuki, D., & Suzuki, Y. (2024). Identifying and Analyzing Low Energy Availability in Athletes: The Role of Biomarkers and Red Blood Cell Turnover. Nutrients, 16(14). https://doi.org/10.3390/nu16142273
Varga, T. V., Ali, A., Herrera, J. A. R., Ahonen, L. L., Mattila, I. M., Al-Sari, N. H., Legido-Quigley, C., Skouby, S., Brunak, S., & Tornberg, Å. B. (2020). Lipidomic profiles, lipid trajectories and clinical biomarkers in female elite endurance athletes. Scientific Reports, 10(1), 2349. https://doi.org/10.1038/s41598-020-59127-8
Wasserfurth, P., Halioua, R., Toepffer, D., Lautz, Z., Engel, H., Melin, A. K., Torstveit, M. K., Claussen, M. C., & Koehler, K. (2025). Screening for Relative Energy Deficiency in Sport: Detection of Clinical Indicators in Female Endurance Athletes. Medicine and Science in Sports and Exercise, 57(6), 1257–1265. https://doi.org/10.1249/MSS.0000000000003644
Whitney, K. E., DeJong Lempke, A. F., Stellingwerff, T., Burke, L. M., Holtzman, B., Baggish, A. L., D’Hemecourt, P. A., Dyer, S., Troyanos, C., Adelzadeh, K., Saville, G. H., Heikura, I. A., Farnsworth, N., Reece, L., Hackney, A. C., & Ackerman, K. E. (2025). Boston Marathon athlete performance outcomes and intra-event medical encounter risk associated with low energy availability indicators. British Journal of Sports Medicine, 59(4), 222–230. https://doi.org/10.1136/bjsports-2024-108181
Williams, N. I., Helmreich, D. L., Parfitt, D. B., Caston-Balderrama, A., & Cameron, J. L. (2001). Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. The Journal of Clinical Endocrinology and Metabolism, 86(11), 5184–5193. https://doi.org/10.1210/jcem.86.11.8024
Williams, N. I., Leidy, H. J., Hill, B. R., Lieberman, J. L., Legro, R. S., & De Souza, M. J. (2015). Magnitude of daily energy deficit predicts frequency but not severity of menstrual disturbances associated with exercise and caloric restriction. American Journal of Physiology. Endocrinology and Metabolism, 308(1), E29-39. https://doi.org/10.1152/ajpendo.00386.2013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Pierce Desmond

This work is licensed under a Creative Commons Attribution 4.0 International License.
